
Chapter 1 Additional Questions

8) Prove that
∞
∑

n=1

1

nσ
converges if, and only if, σ > 1.

∞
∑

n=2

1

n (log n)σ
converges if, and only if, σ > 1. (23)

∞
∑

n=3

1

n log n (log log n)σ
converges if, and only if, σ > 1.

Can you see a pattern?

9) i Using the observation that log 1 = 0 improve the result of Question 4i to

N logN −N + 2− log 2 ≤
∑

1≤n≤N

log n ≤ (N + 1) logN −N + 2− 2 log 2.

ii. Deduce that for such N ,

e2

2

(

N

e

)N

≤ N ! <
N

2

(

e2

2

(

N

e

)N
)

. (24)

This is an increase on the lower bound of (20) by a factor of e/2 ≈ 1. 359..
and a decrease on the upper bound by a factor of e/4 ≈ 0.679..... Alterna-
tively the improvement can be seen in that the lower and upper bounds in
(24) differ by a factor of N/2 whilst in the earlier (20) the factor is N . Can
we do better and have a factor that does not depend on N? See a later
Problem Sheet.

10) Recall from notes the definition of the set

N = {n : p|n⇒ p ≤ N} .

Then unique factorisation of integers justifies, for real s = σ > 1, the last
equality in

ζ(σ) =
∞
∑

n=1

1

nσ
≥
∑

n∈N

1

nσ
=
∏

p≤N

(

1−
1

pσ

)−1

. (25)
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This is a rather convoluted way of showing that ζ(σ) > 0 for σ > 1 since this
finite product can not be zero (to be zero one of the factors would have to
be zero). Yet can (25) be generalised to complex s so that we can conclude
that ζ(s) 6= 0 for Re s > 1?

In the lectures we prove that

∣

∣

∣

∣

∣

ζ(s)−
∏

p≤N

(

1−
1

ps

)−1
∣

∣

∣

∣

∣

≤
∑

n/∈N

1

nσ
≤

∑

n≥N+1

1

nσ
≤

1

(σ − 1)Nσ−1
. (26)

and deduced that

ζ(s) =
∏

p

(

1−
1

ps

)−1

(27)

for Re s > 1. From this we see, on multiplying both sides of (27) by a finite

number of terms that, for any N > 1,

∏

p≤N

(

1−
1

ps

)

ζ(s) =
∏

p>N

(

1−
1

ps

)−1

. (28)

i) Prove that for any M > N,

∣

∣

∣

∣

∣

∏

N<p≤M

(

1−
1

ps

)−1

− 1

∣

∣

∣

∣

∣

≤
1

(σ − 1)Nσ−1
.

Hint Write the product as a sum and use the same ideas that gave the bound
(26) .

ii) Deduce that given s : Re s > 1 there exists N = N (s) > 1 such that

∣

∣

∣

∣

∣

∏

p≤N

(

1−
1

ps

)

ζ(s)− 1

∣

∣

∣

∣

∣

≤
1

2
.

Hint Take a limit over M in Part i.

iii) Deduce

|ζ(s)| >
1

2

∣

∣

∣

∣

∣

∏

p≤N

(

1−
1

ps

)−1
∣

∣

∣

∣

∣

.

Hint Perhaps use the triangle inequality in the form |a| > |b| − |a− b| .
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This is our generalisation of (25) . The N depends on s but for a given s it
is finite and this finite product is never zero and so |ζ(s)| > 0, i.e. ζ(s) 6= 0
for Re s > 1.

11) i) By looking at an integral justify

log

(

1

1− x

)

< 2x

for 0 ≤ x < 1/2.

ii) Use this to prove a weaker form of Theorem 1.4,

∑

p≤N

1

p
>

1

2
log log (N + 1) .

(It may be weaker, but the proof is shorter.)

Hint Part i gives

2
1

p
> log

(

1−
1

p

)−1

so 2
∑

p≤N

1

p
> log

∑

n∈N

1

n
.

Why? This latter sum over n is seen in the proof of Theorem 1.4 and so
follow the steps found there.

12) A function f is convex on [a, b] iff

f(a+ t(b− a)) ≤ f(a) + t (f(b)− f(a))

for all 0 ≤ t ≤ 1. That is, the graph for f between x = a and x = b lies
below the chord joining the points (a, f(a)) and (b, f(b))

i) Prove that if f is convex then

∫ b

a

f(t) dt ≤
1

2
(b− a) (f(b) + f(a)) .

ii) Prove that 1/t is concave on R
+ = {x ∈ R : x > 0} . Deduce that

log

(

1

1− x

)

− x ≤
x2

2 (1− x)

22



for 0 < x < 1.

What change does this lead to in Theorem 1.4?

13) For σ > 1 the Riemann zeta function converges absolutely and so

ζ(σ) ≥
N
∑

n=1

1

nσ
, (29)

for all N ≥ 1, while from Theorem 1.11 we have

ζ(σ) =
∏

p

(

1−
1

pσ

)−1

(30)

for such σ. Assume that there are only finitely many primes and use (30)
and (31) to obtain a contradiction.

Hint For each prime p the factor of the Euler Product is continuous, i.e.

lim
σ→σ0

(

1−
1

pσ

)−1

=

(

1−
1

pσ0

)−1

,

for all σ0 ∈ R. From second year analysis the finite product (or sum) of
functions continuous at a point, is continuous at that point, i.e. for two
functions f and g if limσ→σ0

f(σ) = f(σ0) and limσ→σ0
g(σ) = g(σ0) then

lim
σ→σ0

(f(σ) + g(σ)) = f(σ0) + g(σ0)

and
lim
σ→σ0

(f(σ) g(σ)) = f(σ0) g(σ0) .

By repeated application these results hold for finitely many terms in the
sum or product. Use these facts in your solution.

For comparison the infinite sum or product of functions continuous at a
point, are not necessarily continuous at that point.

14) Prove that Theorem 1.4, or more precisely Question 1 above, implies

∑

p

1

pσ
≥ e−1

(

log

(

1

σ − 1

)

− 1

)

,
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for 1 < σ < 1 + 1/ log 3.

A weaker version of Theorem 1.13.

Hint Given σ, truncate the sum at x, to be chosen. Get the sum into a one
of summing 1/p, not 1/pσ. BUT, to simply say

1

pσ
≥

1

p

throws away too much information. Instead write

1

pσ
=

1

p

(

1

p

)σ−1

≥
1

p

(

1

x

)σ−1

,

since p ≤ x. Finally use Question 1 and then choose x in terms of σ.
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