Chapter 1 Additional Questions

8) Prove that

$$
\begin{gather*}
\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}} \text { converges if, and only if, } \sigma>1 . \\
\sum_{n=2}^{\infty} \frac{1}{n(\log n)^{\sigma}} \text { converges if, and only if, } \sigma>1 . \tag{23}\\
\sum_{n=3}^{\infty} \frac{1}{n \log n(\log \log n)^{\sigma}} \text { converges if, and only if, } \sigma>1 .
\end{gather*}
$$

Can you see a pattern?
9) i Using the observation that $\log 1=0$ improve the result of Question 4i to

$$
N \log N-N+2-\log 2 \leq \sum_{1 \leq n \leq N} \log n \leq(N+1) \log N-N+2-2 \log 2
$$

ii. Deduce that for such N,

$$
\begin{equation*}
\frac{e^{2}}{2}\left(\frac{N}{e}\right)^{N} \leq N!<\frac{N}{2}\left(\frac{e^{2}}{2}\left(\frac{N}{e}\right)^{N}\right) \tag{24}
\end{equation*}
$$

This is an increase on the lower bound of (20) by a factor of $e / 2 \approx 1.359$.. and a decrease on the upper bound by a factor of $e / 4 \approx 0.679 \ldots$. . Alternatively the improvement can be seen in that the lower and upper bounds in (24) differ by a factor of $N / 2$ whilst in the earlier (20) the factor is N. Can we do better and have a factor that does not depend on N ? See a later Problem Sheet.
10) Recall from notes the definition of the set

$$
\mathcal{N}=\{n: p \mid n \Rightarrow p \leq N\}
$$

Then unique factorisation of integers justifies, for real $s=\sigma>1$, the last equality in

$$
\begin{equation*}
\zeta(\sigma)=\sum_{n=1}^{\infty} \frac{1}{n^{\sigma}} \geq \sum_{n \in \mathcal{N}} \frac{1}{n^{\sigma}}=\prod_{p \leq N}\left(1-\frac{1}{p^{\sigma}}\right)^{-1} \tag{25}
\end{equation*}
$$

This is a rather convoluted way of showing that $\zeta(\sigma)>0$ for $\sigma>1$ since this finite product can not be zero (to be zero one of the factors would have to be zero). Yet can (25) be generalised to complex s so that we can conclude that $\zeta(s) \neq 0$ for $\operatorname{Re} s>1$?

In the lectures we prove that

$$
\begin{equation*}
\left|\zeta(s)-\prod_{p \leq N}\left(1-\frac{1}{p^{s}}\right)^{-1}\right| \leq \sum_{n \notin \mathcal{N}} \frac{1}{n^{\sigma}} \leq \sum_{n \geq N+1} \frac{1}{n^{\sigma}} \leq \frac{1}{(\sigma-1) N^{\sigma-1}} . \tag{26}
\end{equation*}
$$

and deduced that

$$
\begin{equation*}
\zeta(s)=\prod_{p}\left(1-\frac{1}{p^{s}}\right)^{-1} \tag{27}
\end{equation*}
$$

for $\operatorname{Re} s>1$. From this we see, on multiplying both sides of (27) by a finite number of terms that, for any $N>1$,

$$
\begin{equation*}
\prod_{p \leq N}\left(1-\frac{1}{p^{s}}\right) \zeta(s)=\prod_{p>N}\left(1-\frac{1}{p^{s}}\right)^{-1} \tag{28}
\end{equation*}
$$

i) Prove that for any $M>N$,

$$
\left|\prod_{N<p \leq M}\left(1-\frac{1}{p^{s}}\right)^{-1}-1\right| \leq \frac{1}{(\sigma-1) N^{\sigma-1}}
$$

Hint Write the product as a sum and use the same ideas that gave the bound (26).
ii) Deduce that given $s: \operatorname{Re} s>1$ there exists $N=N(s)>1$ such that

$$
\left|\prod_{p \leq N}\left(1-\frac{1}{p^{s}}\right) \zeta(s)-1\right| \leq \frac{1}{2}
$$

Hint Take a limit over M in Part i.
iii) Deduce

$$
|\zeta(s)|>\frac{1}{2}\left|\prod_{p \leq N}\left(1-\frac{1}{p^{s}}\right)^{-1}\right|
$$

Hint Perhaps use the triangle inequality in the form $|a|>|b|-|a-b|$.

This is our generalisation of (25). The N depends on s but for a given s it is finite and this finite product is never zero and so $|\zeta(s)|>0$, i.e. $\zeta(s) \neq 0$ for $\operatorname{Re} s>1$.
11) i) By looking at an integral justify

$$
\log \left(\frac{1}{1-x}\right)<2 x
$$

for $0 \leq x<1 / 2$.
ii) Use this to prove a weaker form of Theorem 1.4,

$$
\sum_{p \leq N} \frac{1}{p}>\frac{1}{2} \log \log (N+1)
$$

(It may be weaker, but the proof is shorter.)
Hint Part i gives

$$
2 \frac{1}{p}>\log \left(1-\frac{1}{p}\right)^{-1} \quad \text { so } \quad 2 \sum_{p \leq N} \frac{1}{p}>\log \sum_{n \in \mathcal{N}} \frac{1}{n}
$$

Why? This latter sum over n is seen in the proof of Theorem 1.4 and so follow the steps found there.
12) A function f is convex on $[a, b]$ iff

$$
f(a+t(b-a)) \leq f(a)+t(f(b)-f(a))
$$

for all $0 \leq t \leq 1$. That is, the graph for f between $x=a$ and $x=b$ lies below the chord joining the points $(a, f(a))$ and $(b, f(b))$
i) Prove that if f is convex then

$$
\int_{a}^{b} f(t) d t \leq \frac{1}{2}(b-a)(f(b)+f(a))
$$

ii) Prove that $1 / t$ is concave on $\mathbb{R}^{+}=\{x \in \mathbb{R}: x>0\}$. Deduce that

$$
\log \left(\frac{1}{1-x}\right)-x \leq \frac{x^{2}}{2(1-x)}
$$

for $0<x<1$.
What change does this lead to in Theorem 1.4?
13) For $\sigma>1$ the Riemann zeta function converges absolutely and so

$$
\begin{equation*}
\zeta(\sigma) \geq \sum_{n=1}^{N} \frac{1}{n^{\sigma}} \tag{29}
\end{equation*}
$$

for all $N \geq 1$, while from Theorem 1.11 we have

$$
\begin{equation*}
\zeta(\sigma)=\prod_{p}\left(1-\frac{1}{p^{\sigma}}\right)^{-1} \tag{30}
\end{equation*}
$$

for such σ. Assume that there are only finitely many primes and use (30) and (31) to obtain a contradiction.

Hint For each prime p the factor of the Euler Product is continuous, i.e.

$$
\lim _{\sigma \rightarrow \sigma_{0}}\left(1-\frac{1}{p^{\sigma}}\right)^{-1}=\left(1-\frac{1}{p^{\sigma_{0}}}\right)^{-1}
$$

for all $\sigma_{0} \in \mathbb{R}$. From second year analysis the finite product (or sum) of functions continuous at a point, is continuous at that point, i.e. for two functions f and g if $\lim _{\sigma \rightarrow \sigma_{0}} f(\sigma)=f\left(\sigma_{0}\right)$ and $\lim _{\sigma \rightarrow \sigma_{0}} g(\sigma)=g\left(\sigma_{0}\right)$ then

$$
\lim _{\sigma \rightarrow \sigma_{0}}(f(\sigma)+g(\sigma))=f\left(\sigma_{0}\right)+g\left(\sigma_{0}\right)
$$

and

$$
\lim _{\sigma \rightarrow \sigma_{0}}(f(\sigma) g(\sigma))=f\left(\sigma_{0}\right) g\left(\sigma_{0}\right)
$$

By repeated application these results hold for finitely many terms in the sum or product. Use these facts in your solution.

For comparison the infinite sum or product of functions continuous at a point, are not necessarily continuous at that point.
14) Prove that Theorem 1.4, or more precisely Question 1 above, implies

$$
\sum_{p} \frac{1}{p^{\sigma}} \geq e^{-1}\left(\log \left(\frac{1}{\sigma-1}\right)-1\right)
$$

for $1<\sigma<1+1 / \log 3$.
A weaker version of Theorem 1.13.
Hint Given σ, truncate the sum at x, to be chosen. Get the sum into a one of summing $1 / p$, not $1 / p^{\sigma}$. BUT, to simply say

$$
\frac{1}{p^{\sigma}} \geq \frac{1}{p}
$$

throws away too much information. Instead write

$$
\frac{1}{p^{\sigma}}=\frac{1}{p}\left(\frac{1}{p}\right)^{\sigma-1} \geq \frac{1}{p}\left(\frac{1}{x}\right)^{\sigma-1}
$$

since $p \leq x$. Finally use Question 1 and then choose x in terms of σ.

